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Abstract. This paper seeks to dra� the attention to the fact that the advances in physics 
are connected �ith the advances in technology, in particular �ith the advances in me-
asuring techniques. The mathematical link bet�een physics and measuring techniques 
is realized using automatic control as the common mathematical core bet�een classical 
mechanics and the theories of measuring instruments. The reasons for the choice of Cer-
melo – Fraenkel axiomatic set theory as the most adequate metatheory for the theories of– Fraenkel axiomatic set theory as the most adequate metatheory for the theories of Fraenkel axiomatic set theory as the most adequate metatheory for the theories ofy for the theories of 
physics and theories of techniques �ill be given. 
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Introduction

Not very long ago the considerable part of �estern philosophy �as occupied �ith the 
problem of advances in natural sciences. This situation has continued up to today and 
it looks like it �ill continue in the future. A large part of the research in philosophy of 
sciences is directed to the problem of advances in physics.

The purpose of this article is to sho� ho� the mathematical core of a physical theo-
ry (in our case: classical mechanics) is linked to technology: firstly to the theory of au-
tomatic control, secondly to that of measuring devices. This link, of course, is meant in 
logical sense: there exists the common mathematical core bet�een classical mechanics, 
theory of automatic control and theory of measurement devices. As far as I kno� this 
fact �as not described in philosophy and history of technology before.

It also sho�s that historically the advances in physics �ere dependent of the advan-
ces of measuring devices and vice versa: the advances of technology �ere dependent 
on the advances of theoretical and experimental physics. 

differing viewpoints about the relationship between  
physics and technology

An important discovery in modern physics took place at the very beginning of the 
t�entieth century:  Classical mechanics has ceased to explain the phenomenon called 
black body radiation at the frequencies of violet spectrum.  In the year 1900 M. Planck 
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used the hypothesis that electromagnetic radiation depends on frequency not occur-
ring continuously but at discrete intervals. This �as an ad hoc explanation in the area 
of classical mechanics. Quantum mechanics �as discovered by Schroedinger and Hei-
senberg in the years 1925–1927. It �as able to explain many phenomena �hich classi-
cal mechanics could not explain, including the already mentioned black body radiation. 
It must be stated that as far as black body radiation is concerned, quantum mechanics 
explained it not ad hoc as in the above mentioned case of Einstein’s hypothesis: rather,s hypothesis: rather, 
it follo�ed directly from the axioms of quantum mechanics.

The discovery of quantum mechanics �as called later a “scientific revolution” in the 
history of science. Similar advances in physics �ere the discoveries of the theories of 
special relativity and general relativity by Einstein.

Special relativity �as able to explain phenomena �hich classical (non – relativistic) 
mechanics could not explain. The same statement can be said about general relativity 
theory. 

The transition from classical mechanics to quantum mechanics has meant a signifi-
cant change in the axiomatic system and main la�s of classical mechanics. The same is 
true for special relativity and general relativity.  Ho�ever, these revolutionary discove-
ries in physics �ill not be considered further in this article. 

As the title of the article indicates, my purpose is to sho� the interdependence be-indicates, my purpose is to sho� the interdependence be-my purpose is to sho� the interdependence be-
t�een the advances in theories of physics and the advances of the theories of techno-
logy.

Here I should mention the article of  Scheibe (1999: 166), �here he sho�s that 
he and Krueger differed on the issue of �hether the measuring devices belong to the 
theories of physics or not:  “… In the latter group �e additionally meet t�o relations 
�hich sho� that one theory is an auxiliary theory for the other theory. This means 
having the purpose either to test the other theory or firstly to interpret it empirically. 
This is necessary, for example, for the purpose to test Ne�ton’s sky mechanics. On the 
other side the theories of ho� the measuring devices function often simultaneously 
provide the interpretation of the magnitudes of the theory �hich must be measured 
by those devices, e. g. the theory of a galvanometer provides the interpretation of the 
term “current in a conductor”.

As far as physics is concerned I shall first deal �ith the scope of the advances of the 
theories of classical mechanics, in particular I shall mention only singular advances from 
Ne�tonian Mechanics to Lagrangean and to Hamiltonian mechanics. The main purpose of 
my article is to describe the application of Hamiltonian mechanics to measuring instrument 
theory. As already mentioned at the very beginning, I shall discuss the theory of automatic 
control as the link bet�een Hamiltonian mechanics and measuring instrument theory.  
More specifically: Hamilton function or “Hamiltonian” has more advantages in the area 
of applications of classical mechanics than Lagrangean function in Lagrange formulati-
on does, a fortiori more advantages than force function in Ne�tonian formulation. This 
remark applies only to the use of Hamilton function in classical mechanics.

It is useful to mention that both Hamilton function in classical mechanics and Ha-
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milton operator in quantum mechanics are important to create the intuitive connection 
bet�een classical mechanics and quantum mechanics.

As far as connection bet�een physics, technology and engineering is concerned I 
have already mentioned t�o areas in engineering: theory of automatic control and me-
asurement instrument theory.

Hamiltonian is significant in the theory of automatic control, especially in the area 
of optimization of automatic control systems.

The significant part of the theories of some measuring devices (at least electric me-
asurement devices) can also be treated as extensions of Hamiltonian mechanics. This is 
the opinion of Krueger, �hich is contrary to the opinion of Scheibe as quoted above. 

In this connection I �ould like to mention that both Scheibe and Krueger �orked 
according to the program “Intertheoretic Relations” of the universities of Goettingen of the universities of Goettingen 
and Bielefeld in the seventies of the last century. of the last century. 

Metatheory for of physics and technology

As already mentioned in the introduction, the advanced theories explain more pheno-
mena than their predecessors did. This means that in the area of experimentally acces-
sible sentences the set of correct predictions by the advanced theory is greater than the 
set predicted by the older theory. To say it the other �ay: some predictions of the ne�, 
advanced theory contradict to the predictions of the old theory. The natural question 
arises: if the extensions of theories by means of auxiliary theories to the experimentally 
accessible sentences contradict, do the theories themselves contradict? 

Although �e �ish to concentrate our ideas only to the above mentioned three theo-
ries of classical mechanics, let us take momentary because of didactic reasons the follo-
�ing example: classical mechanics – quantum mechanics. We can extend both theories 
by means of auxiliary theories and reach the protocol sentences of our measurement 
devices: classical mechanics and quantum mechanics. 

Let us take e. g. either Gibbs or Max�ell statistical theories as extensions both of 
the classical mechanics and of quantum mechanics. They contradict in part of their pre-
dictions at the experimental level. Do quantum mechanics, represented by selfadjoint 
operators in Hilbert space contradict classical (in our case) Hamiltonian mechanics re-
presented by Borel functions in phase space?

The ans�er of some philosophers of science some decades ago �as: the theories 
can contradict only if they have the same language in their syntactical part, respectively, 
the same semantical model of their mathematical structures.  

The next question is: do the theories of physics and some theories of technology 
have the same mathematical structure? 

In order to find the coincidence or at least correspondence bet�een classical me-
chanics, automatic control theories and measurement instrument theories �e must 
have a metatheory by means of �hich �e could treat our theories. Ho� should the 
metatheory look like?
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Let us look at our colloquial language.
The explanations of facts of everyday life are presented using �ords of a colloquial life are presented using �ords of a colloquial   

language e. g. English, spoken or �ritten, according to the rules of the English Gram-
mar. The grammar, especially syntax and morphology has its rules but nobody �ould 
affirm that the statements of our everyday language are unique. Therefore colloquial 
languages do not fit for our purposes.

For mathematics, physics and technique �e use the rules of the artificial languages 
�hich �e call logic.

For the purpose of orientation of the follo�ing sections �e can presuppose the fol-
lo�ing statement: the mature theories of physics and parts of the mature theories of 
technology are mathematics, couched in the physical and technical vocabulary. 

The �eakest logic is propositional logic. Propositional logic is an artificial language:Propositional logic is an artificial language: 
it is study of truth, restricted to the relationship bet�een the truth of one proposition 
and that of another. 

If �e can prove in logic everything that is true, and vice versa then �e can say the 
logic is complete. It asserts that the existent list of rules (syntactical part of the propo-. It asserts that the existent list of rules (syntactical part of the propo-
sitional logic) allo�s us to deduce every consequence (semantical part of logic). The 
constants of propositional logic contain also symbols, �hich are similar to the �ords 
of colloquial language: “and”, “not”, “or”, “implies”, “if and only if”.

Using propositional logic �e can prove only the theorems of a very modest part of 
mathematics: Boolean algebra, “naive” set theory, etc.

First order logic has richer language than propositional logic. It contains not only 
logical connections bet�een its sentences (as propositional logic does), but additionally 
the quantifiers for “all” and “there exists”. 

Before discussing the completeness of first order theories let us speak a �hile about 
the concept of “completeness”, �hich is significant both in propositional, first order and 
in second order logic:

If �e can prove everything that is true, then �e say that the logic is complete.
If the statement is consistent (not contradictory) in the syntactical part of the theo-

ry, then it is valid in the semantical part of the same theory.
Here are the original formulations of Goedel published  in the years 1935–1937:
The completeness theorem of first order logic has t�o forms:
Completeness Theorem, First Form (Goedel):
A formula A of a theory T is theorem of T if and only if is valid in T. 
Completeness Theorem, Second Form:
A theory T is consistent if and only if it has a model.
First order logic is richer then propositional logic. Using the above men-

tioned quantifiers �e can axiomatize more mathematical theories and pro-
ve uniquely more theorems than �e could do using only propositional logic: it 
can be applied in mathematics also to group theories, algebraic theories, etc. 
Nevertheless �e are using continuous functions in physics and in technology also. In 
order to define continuous functions �e must use the theories of topology. 
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Using the first order language the function varies in the argument domain over 
numbers or symbols, of a set. In topology the function can vary in the definition domain 
over sets and over sets of sets. This is the reason �hy �e need to extend our first order 
logic so that the objects of our mathematical theory could be able to vary not only over 
sets but also over sets of sets. The number of sets in topology can be countable infinity. 
By means of first order language �e can not define infinity. 

Incompleteness Theorem (Goedel-Rosser). If theory T is an axiomatized extension 
of the countable theory N, then T is not complete. 

(Schoenfield: 132) �rites the follo�ing commentary to the Incompleteness Theo-
rem:

“The incompleteness theorem has important implications concerning the axiomatic 
method. The idea of axiomatic method is that, given certain concepts, �e introduce a 
language for expressing facts about these concepts and then introduce an axiom system 
for proving facts about these concepts. The axiom system must be such that all theo-
rems of the axiom system are true; and �e hope that it �ill be such that all true sen-
tences of the language �ill be theorems. In any case, �e �ill certainly �ant the axioms 
and rules of the axiom system to be such that �e can decide �hat is and �hat is not a 
proof. (Other�ise, �e could achieve our object by simply adopting all true sentences 
as axioms.)”.

“The incompleteness theorem tells that if T is a consistent (not contradictory) 
axiomatized extension of N, then some closed formula A of T is undecidable in T” 
(Ibid. :133).

We can see that first order logic alone is not adequate to treat mathematics contai-
ned in theories of physics and technique for the purpose of their comparison.   

Before �e pass from the first order logic to the other kinds of logic, respectively to 
one useful for us, namely Cermelo-Fraenkel set theory, I �ish to make an important 
remark in order to prevent possible misunderstandings: mathematics can be treated 
syntactically as a theory �ith its extensions and as a structure �ith its expansions.  

 Physics and technique can not be theories in the sense of mathematical logic. They 
must be interpreted by theories �hich are “empirically significant” (the term in quota-
tions �as often used some three or four decades ago in the philosophy of science).

According to the textbooks of mathematical logic, the interpreted theory is a struc-
ture and not a theory. Instead of speaking about expansions of structure in the sense of 
mathematical logic, �e can also speak about applications in case of a general theory of 
physics or of a general theory of technology.  

Let us return to Incompleteness Theorem: In order to immunize physical theories 
on the metatheoretical level and make them immune against the possible reproaches 
from the direction of Goedel’s Incompleteness theorem.

One possible �ay to master this situation �ould be to choose first order many sorted 
logic. In case of topology �e could choose one sort of variables for sets the other sort of 
variables for sets of sets and so on. This �ould be a very complicated procedure.

Lud�ig has proposed in the years bet�een 1970 and 1978 Cermelo – Fraenkel axio-
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matic set theory. Lud�ig and Thurler (2006) have made some inessential  changes in 
respect to the previous editions of Lud�ig. Additionally some easily solvable exercises 
and illustrations �ere added.

The reasons to use Cermelo – Fraenkel CF (C) set theory for logical reconstruction of 
physical theories can be the follo�ing: already in the first version of the year 1908 the 
German �ord “Urelement” �as used. The concept “Urelement” became internationally 
used. In Cermelo – Fraenkel (C)  set theory the �ord Urelement is used to denote both 
mathematical and empirical concepts and physical things.

Cermelo – Fraenkel (C) set theory is  first order logic, extended by means of explicit 
definitions  �ith the binary predicate symbol x  y. “We intend that the individuals 
of ZF shall be pure sets, and that shall mean that x is a member of y” (Schoenfield: 
239–245). 

We can reconstruct the theories of physics and technology by means of axiomatic 
set theory.

Bourbaki (1968) proposed to reconstruct the theories of mathematics dividing the 
structures of mathematics into three parts: main base sets, auxiliary base sets and ty-
pified sets.

He proposed also the “procedure of deduction of the poorer species of structures 
from the richer species of structures”.

One of his simple examples is: the deduction of topological species of structures 
and group species of structures from the richer species of structures, namely from the 
structure of topological groups.

Advance in classical mechanics: newtonian, Lagrange, Hamiltondvance in classical mechanics: newtonian, Lagrange, Hamilton

Ne�tonian mechanics �as published in Principia Mathematica in 1687. According to its 
second la�, it described its objects in terms of forces and accelerations. The descripti-
on �as suitable using Cartesian coordinate system. Lagrange published his Mecanique 
Analytique in 1788. It described its objects in generalized coordinates. Therefore it 
�as possible to solve more problems using Lagrangean formulation, eliminating the 
forces of constraint. Nevertheless it had the disadvantages �hen applied to dissipative 
systems. 

Hamiltonian mechanics �as completed in 1834. It is more flexible in its choice of 
coordinates for solving problems. Lagrangean formalism centers on Lagrangean func-
tion L. 

If �e denote the kinetic energy T, potential energy U, then for most systems of inte-
rest, L is just the difference of the kinetic and potential energies:

L = T – U. 
The 2n coordinates define a point in state space and specify a set of initial conditi-

ons (at any chosen time t0) that determine a unique solution of n second-order diffe-
rential equations of motion, Lagrange equations.
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The Hamiltonian approach leads to Hamilton equations for a system �ith n degrees 
of freedom, the Hamiltonian approach gives 2 2n first-order differential eqations , instead 
of the n second-order equations of Lagrange. 

H (q, p, t) may have an explicit time dependence, as indicated by the final argument may have an explicit time dependence, as indicated by the final argument 
t, and this also makes H vary �ith time. Mathematically, this means that the derivative 
of Hamiltonian contains 2n+1 terms.

Today in classical Hamiltonian mechanics usually 2in classical Hamiltonian mechanics usually 2n-dimensional cotangent bundle 
of the n-dimensional configuration space is chosen. 

The above three formulations of classical mechanics (Ne�tonian, Lagrangean and 
Hamiltonian) are equivalent in the sense of logic. This means that one theory can be 
deduced from the other and vice versa by means of formal logic. On the other hand this 
does not mean that the applications of the Hamiltonian formulation are equivalent to 
the applications in formulation of Lagrangean mechanics. 

Concrete example: the important Liouville’s theorem:
T�o identical systems that start out �ith nearly identical initial conditions move 

rapidly apart in phase space and if the motion is chaotic, then at least some pairs of 
points inside the volume must move rapidly apart. But the total volume cannot change. 
Therefore as the volume gro�s in one direction, it must contract in another direction, 
becoming like a cigar. 

The proof of Liouville’s theorem depends only on the validity of Hamilton’s equa-
tions and there is no equivalent proof of Liouville’s theorem Lagrangean  theory.

Hamiltonian formalism uses Hamilton function H �hich denotes the total energy.
H has clear physical significance and is frequently conserved not only in physics but 

also in automatic control theory.
Quantum mechanics as theory of microphysics �as mentioned in the introduction. 

It uses Hamilton operator to define total energy of a quantum mechanical object. In 
order to visualize transition of the objects of classical mechanics to the quantum me-
chanical objects the so called “quantization rules” �ere introduced in the past. They 
have some significance also today.

As far as automatic control theory is concerned �e can tell in advance that the re-
cent automatic control theory and the measurement instrument theory have no direct 
application to quantum mechanics: all applications of quantum mechanics can be me-
asured only by classical measurement instruments.

We have seen that as far as the area of validity of classical mechanics is concerned  
Hamiltonian mechanics has many advantages. One of the applications of classical me-
chanics is the theory of automatic control theory. Automatic control theory includes op-
timization problem. The maximum principle of academician Pontryagin can be applied 
to solve the tasks of optimal control. The input there is represented by a discrete, not 
continuous time function Dambrauskas (2003: 154). 

For the engineers �ho �ish to specialize for automatic control the simplest problem 
of obtaining the optimal control of a time invariant and continuous dynamical system 
�as proposed (Doolin 1990: 116). Often specializing in automatic control is started 
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using Riccati equation �hich presupposes the Hamiltonian classical mechanics. The 
only difference from physics in this case is that �e use Hamilton matrix, as the alge-
braic extension of the Hamilton function. 

Until recent �e treated Hamiltonian mechanics only in so-called time domain. Some-
times it is more convenient to treat the objects of the automatic control theory and the 
theory of measuring devices in frequency domain. 

Using either Fourier or Laplace transform or, as an alternative: Laplace transform 
and inverse Laplace transform �e can get transfer function.

The transfer function is defined as the quotient of Laplace transform of the output 
vector to the input vector. 

Hamiltonian mechanics, automatic control, measurement devices 

An ideal measuring device must reproduce fla�lessly the output of the temporal pro-
cess of the measured magnitude (Kiencke 2008: 85). Let is mention first for example 
the design of a manometer. It can have a nonlinear behavior. In order to describe the 
dynamic behavior of the measurement device a step signal is used as input. The devia-
tion of the step response from the ideal step response is considered as a mistake. 

As far as the evaluation of step response is concerned the difference bet�een peri-
odic and non periodic adjustment must be taken into account.

There is the other method for the determination of the dynamic behavior of the 
frequency response, namely the method described in the previous section: 

The determining of the design of measuring device in the frequency domain, is usu-
ally used in automatic control theory. As already pointed out in the previous section the 
frequency domain is equivalent to time domain. The treatment in time domain is one 
of applications of Hamiltonian mechanics. The equivalence can be proved by means of 
Laplace transformations in both directions.  

Environment for measurement devices

Since there are no universal theories of measurement, Piotro�ski (1992: V–VI) pro-ince there are no universal theories of measurement, Piotro�ski (1992: V–VI) pro-–VI) pro-VI) pro-
poses four axioms �hich, according to his �ords, have been kno�n and used for some 
time: Isomorphic relations occur bet�een the states of a given quantity and the values 
of that quantity.

The mapping of a state of a given quality into an image of the state is ambiguous – a 
point is mapped into a set.

The ambiguity of the mapping of a state into an image, produced �ith a measuring 
device, may be determined from the mathematical model �hich describes the metro-
logical properties of the instrument.

The declared image of reality is related to some agreed reference states. 
Lud�ig (2006: 85) proposes species of uniform structures �hich maybe can des-

cribe the physical and technical reality more adequately. For the purpose of measu-
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rement technique it is better to describe the mathematical language of physical and 
technical reality theory not using the structures of (topological) Euclidean metric but 
uniform structures. 

If �e have registered the finite set of measured magnitudes and if �e have decided 
to take the value a, then using uniform structures: “……… has the advantage, that the 
definition of the neighbourhood of a and at the same time the values �hich in the 
frame�ork of measurement accuracy can not be distinguished from a do not depend 
on a” (Scheibe 1997: 97).

Therefore if �e are measuring the mass of a planet the difference in 1 gram does 
make any meaning. On the other side if �e are measuring mass in the microscopic 
area �ith the accuracy 1 gram, the measurement makes no sense. The conclusion: �e 
get the amendment of the situation if �e use not absolute but relative mistakes of our 
measurements and uniform metric structures for the evaluation of the results of mea-
surements instead topological metric structures. We have already noticed that uniform 
spaces are generalizations of metric spaces.

Conclusions

The recent literature in the philosophy of physics and technology describes various 
aspects both of technology and of physics. It is difficult to find enough literature, �hich 
sho�s the interdependence bet�een the mathematical cores of physics and technology 
referred to important inventions and discoveries. 

Mathematical logic and axiomatic set theory used to systematize progress in physics 
�ere already mentioned in this article. This article sho�s that the same metatheories 
can be used to discuss the interdependence bet�een physics and technology.  
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Santrauka. Dabartinėje literatūroje, skirtoje pažangos technikoje ir pažangos technologijoje ap-
rašymui, abiejų žmonijos veiklos sričių pasiekimai svarstomi nekreipiant dėmesio į abipusę pri-
klausomybę. Straipsnio tikslas – paminėti, kad abiejų sričių matematinės struktūros turi bendrą 
branduolį. Bendras branduolys šiandien aprašomas tik aptariant fizikos teorijų pažangą. Nuro-
doma, kad tarp Hamiltono mechanikos, automatinio valdymo kontrolės ir matavimo prietaisų 
egzistuoja bendras matematinių struktūrų branduolys.
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